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Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding-
states approach. This assumes that all pair correlation fundgigjfs) of a polydisperse fluid are conformal to
those of an appropriate monodisperse binary flueference systejmand can be generated from them by
scaling transformations. The correspondence law extends to ionic fluids a scaling approxi®Ajisnccess-
fully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a
continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by
solving the Orstein-Zerniké)Z) integral equations coupled with an approximate closure. The SA is first tested
within the mean spherical approximatigSA) closure, which allows analytical solutions. The results are
found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown
to be an improvement over the “decoupling approximation” extended to the ionic case. The simplicity of the
SA scheme allows its application also when the OZ equations can be solved only numerically. An example is
then given by using the hypernetted chain closure. Shortcomings of the SA approach, its possible use in the
analysis of experimental scattering data and other related points are also briefly addressed.
[S1063-651%9907112-3

PACS numbgs): 05.20.Jj, 61.10.Eq, 61.12.Ex

[. INTRODUCTION numbersp of components, such as the polydisperse ones,
would require large systems of nonlinear equations. As a
Colloidal suspensions of charged particles represent aonsequence, apart from very few peculiar cddéslE nu-
special class of ionic fluidgl—3]. Unlike solutions of simple  merical studies on multicomponent fluids are usually re-
electrolytes such as NaCl, charged colloidal suspensions astricted top<10. Finally, under the highly demanding con-
highly asymmetric mixtures, containing both macroions andlitions of colloidal suspensions nonconvergence problems of
microions with large size and charge differences. Moreoverthe algorithms may often arise.
macroions often exhibit “polydispersity,” which means that  The present paper will focus on the effects of polydisper-
particles of a same chemical species are not necessarily idesity in SAS from ionic colloidal mixtures, in the framework
tical, because their size, charge or other properties may bef IE theories based upon the Ornstein-Zernjk&) equa-
spread over a large spectrum of valugbemical species tions with approximate closures. Our study refers to the sim-
whose particles are all identical are then referred as “monoplest polydisperse case with only two ionic species: mono-
disperse’). The presence of only one polydisperse macroiordisperse microions and macroions with both size and charge
species is sufficient to make the colloidal suspension a mixpolydispersity. We shall refer to this system@sydisperse
ture with a very large number of components. The peculiar binary (two-speciesionic mixture.
features of this “colloidal regime,” namely, asymmetry and  To overcome the impossibility of investigating polydis-
polydispersity, give rise to a variety of phenomena concernperse systems when IEs have to be solved numerically, one
ing microscopic ordering, phase behavior, diffusion, and sdas to reduce the number of components and replace the
on. study of a polydisperse fluid with that of a nearly equivalent
Experimental information on the structure of such fluidsbut much simpler system. One possibility, not adopted in this
can be obtained from small-angle scatteri(®AS tech-  paper, is to neglect microions altogether and approximate the
niques, by using light, neutrons or x rays. However, when dluid as a system of macroions interacting through a repul-
significant degree of polydispersity is present in the samplesive screened Coulomb potential, which implicitly takes into
the interpretation of experimental data for scattering intensityaccount the contribution of the neglected particlds A
is hardly a simple task. In fact, polydispersity and large sizefurther refinement of this viewpoir{3,5] is to build up an
charge differences represent a serious challenge to the avadguivalenteffective mixturewith p’<p new components,
able theoretical tools. Monte Carlo or molecular dynamicswhose molar fractions and diameters are determined by re-
simulations for polydisperse colloidal fluids involve very placing a continuous distribution of macroion sizes with an
large numbers of particles. Moreover, large size asymmetrieappropriatep’ -component histogram. Usuallp’ =3 is al-
at high densities may cause ergodicity problems. On theeady sufficient and therefore the problem is reduced to get a
other hand, integral equatiofis) of the liquid state theory numerical solution of IEs for a three-component macroion
are analytically solvable only under special conditions,mixture. This procedure could be easily extended to include
whereas their numerical solution for mixtures with large monodisperse microions and its counterpart would involve a
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four-component mixturdthree for the macroions plus one the SA with the HNC closure will then be addressed and few
for the microiong. This method can be expected to be quiteremarks will be included in the conclusive Sec. VI.
accurate, but it would demand a sizeable amount of numeri-
cal work. Il. SMALL ANGLE SCATTERING AND INTEGRAL

In this paper we present an even simpler approach, which EQUATION THEORY
requires the solution of only two-component IEs. We shall
show that the problem of a polydisperse binary ionic mixture
can be reduced to the Study Omnodisperse binar'y)nic .An.ioniC colloidal Sqlution is formed by macroions and
mixture, with microions and all identical macroions. The so-Microions suspended in a homogeneous solvent. Usually,
lution for such a reference system is the “starting” point for this suspending fluid is formed by very small partic(esth
several approximations of increasing accuracy. Our mai€SPect to the macroiopsnd is then modelled as a con-
purpose is to show that, at the end of this hierarchy, accurat@Uum, characterized by a given dielectric constant and an
approximate scattering functions for a polydisperse binanfMform density of scattering matter. _ _
mixture can be easily calculated with moderate numerical According to the scattering theory, the intensity of the
work upon using a corresponding states theory. Our methogcattered radiatiotiight, neutrons, or x raysis proportional
hinges on aconformality[6] argument, which assumes that to the ensemble or time average|ofq)|® over all possible
all pair correlation functions of the polydisperse fluid haveequilibrium configurations of the sample particles. Heris
essentially the same “shape” of their monodisperse binanthe exchanged wave vector and(q) is the three-
counterparts and can be generated from them by means dfmensional Fourier transform of(r), a quantity related to
simple scaling transformations. This correspondence law ighe density of scattering matter at the positiomside the
the extension to ionic mixtures of a scaling approximationsample. For neutrona(r) is the scattering length density
(SA) successfully proposed for nonionic colloids in a recentn(r)=3,b,8(r —r,), whereb, is the scattering length of the
paper[7]. This is a nontrivial extension, since the good per-kth nucleus located ai and & denotes the Dirac delta func-
formance of the SA for thehort-rangepotentials of non-  tion. For x raysn(r) coincides with the electron density,
ionic colloidal fluids examined in Ref7] (uncharged hard whereas for light it becomes the refractive index. In the con-
sphere and Lennard-Jones interactjodses not automati- tinuum solventn(r) has an uniform valua,.
cally ensures the same success in the preseneagfrange In addition to the continuum solvent hypothesis, we as-
Coulomb attractions and repulsions. sume that inside each iofmacroion or microion, indiffer-

To properly treat both macroions and microions on theently) the scattering matter has a well defined boundary, i.e.,
same footing, the colloidal suspension will be described bythere is ascattering corewith a well-definedscattering vol-
the primitive modelPM) of electrolyte solutions, which de- yme, not necessarily coincident with the particle volume.
picts all ions as charged hard spheres embedded in a dielegshile the former depends on the particle-radiation interac-
tric continuum representing the solvent. The new SA will betion, the latter is determined by the interparticle repulsions
tested, for the PM, against results from an analytic treatmerdnd is well-defined only in the presencehafrd body repul-
of polydispersity, which is exact within the mean sphericalsions. The definition of a volume for particles with soft re-
approximation(MSA) closure for the OZ integral equations. pulsions(e.g., Lennard-Jones particlegquires in fact some
In the PM-MSA case, the OZ equations were solved ana|ytiarbitrary and nonuniversal convention.
cally many years agp8—11], and, more recently, a closed  |n the case of suspended particles with spherically sym-
analytical formula was obtained for the scattering intensitymetric interactionsthomogeneous and isotropic flyiiénd
from charged hard sphere fluids with any arbitrary number okpherical homogeneous scattering cores, the SAS theory
component$12]. An essential feature of the SA is that, be- yjelds the following expression for the total scattering inten-

cause of its s_implicity, this sch_eme can be applied equallgity | (q) of a p-component solution in a volumé [3]:
well to combinations of potential models and closures for

which only a numerical solution of IEs is possible. It is L

therefore possible for instance, as we shall explicitly show, R(Q)E|(Q)/V=P2 Z VX XgF () F 5(A) Sep(a),
to couple the SA with the hypernetted ch4iNC) closure, astpet )
which is more accurate than the MSA one for ionic fluids. In

these cases the SA becomes a valuable new tool to predigt a function of the magnitude of the exchanged wave vector
p.roperties of polydisperse colloidal suspensions in a verg=(4x/)\)sin(d/2), with A being the wavelength of the in-
simple way. cident radiation andd the scattering angle. The Rayleigh
The paper is organized as follows. In the next section theatio R(q) is the total scattering intensity per unit volume
basic formalism of the small angle scattering and integrafa|so called the differential scattering cross section and often
equation theory is briefly recalled along with the primitive denoted by ¢3/dQ)(q)]. In Eq. (1) p is the total number
corresponding states treatment of scattering functions is preyrm factor of species, respectivelyF (q) is related to the

sented in detail, together with two simpler approximations.gistriputionn(r) of scattering matter inside particles of spe-
The exact MSA analytical expression for the scattering injes, and we can express it as

tensity from charged hard spheres is also reviewed and some

of its predictions for polydisperse fluids will be reported. In 3j,(qas°2)
Sec. V numerical results from the proposed approximations F.(q)=V:n,—ng) SC;

are compared in detail within the MSA. The performance of qo5212

A. Scattering intensity and structure factors

: )
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o5 peing the diameter of the scattering corgs®" closure. Once that the IEs have been analytically or numeri-
= (7/6)(c°®3 its volume,n, the uniform scattering den- cally solved, the partial structure factdg,(q) can be ob-

sity of species, and the difference,—n, its “contrast,”  tained from Eq(3).
while j;(x)=(sinx—xcosx)/x? is the first-order spherical
Bessel function. Finally, the function§,s(q) are the . PRIMITIVE MODEL FOR POLYDISPERSE IONIC
Ashcroft-Langreth partial structure factdrs3] FLUIDS
Sup(Q)=Sap+p ma[;(@, 3) We are interested in studying polydispersity effects by

properly considering both macroions and microions on an
where 8,4 is the Kronecker delta anﬁaﬁ(q) is the three- €qual footing. The §implest possibility is the primitivg model
dimensional Fourier transform of the total correlation func-(PM), well known in the theory of electrolyte solutions. It
tion N s(1)=0.s(r) — 1. Here,g.4(r) is the radial distribu- consists of an electroneutral mixture pfdifferent compo-
tion function (RDF) between two particles of speciesand nentg, represented by _charggd hard spheres empedded na
B at a distance. continuum solvent of dielectric constaat The speciesy,
In addition to the scattering intensity, it is then convenientVith diametero,, has molar fractiorx, and electric charge

to define a “measurable” structure factf8] as z,e(e is the proton charge argj, the valency. The interpar-
ticle potentialu,z(r) is defined by

PP
Sw(@=2 X XaXgWa(@W(D)Sep(q),  (4) 1
a=1 =1 . +oo for r<o,z=5(0,t0p),
. . (kgT) ™ “ugp(r)= 2
with weights z,2glglr for r>o,4,
9
_ F 9
w,(q)= (FA(q)) ' ) wherelLg=e?/(ekgT) is the Bjerrum length. The electroneu-
trality condition requires thatz)=>"_,x,z,=0.
the brackets meaning:Z(q»EzaxaFi(q)_ The relation- The PM can also be used for polydisperse colloidal sus-
ship betweerR(q) and Sy(q) is pensions. In a “‘discrete representation” of polydispersity, a
polydisperse two-species fluid is described lyr@mponent
R(q)=p{F%(q))Su(Q). (6) mixture (p>1), in which the monodisperse microions

) . ) . ) ~(chemical species)lare the first component, with diameter
From the theoretical point of view, we will obtain the partial o4, chargez, and molar fractiorx;, while the remainingp

structure factorsS, 5(q) by solving IEs for theh,(r). —1 components correspond to different varieties of the
single macroion specidshemical species)2lt is often con-
B. Integral equations venient to adopt a “continuous representation” of polydis-

The OZ integral equations of the liquid state theory forPersity, withp—cc and a continuous spectrum of values for

p-component mixtures with spherically symmetric interpar-tN€ macroion “disperse” propertiegsize, charge, etc. In
ticle potentials aré14,15 such acontinuous-mixturdormalism, we assume that mac-

roions have a continuous distribution of diameteraround
P an average one, denoted by),. For simplicity, we make
hap(r)=Cup(r)+ 2 p,,f dr’ca,,(r’)hvﬂ(lr—r’l), the further reasonable assumption that the charge polydisper-
v=1 ) sity of macroions is fully correlated to the size polydisper-
sity. This can be easily accomplishggl4] by choosing the
where thec,,(r) are the direct correlation functions and charge(or valency of each macroion to be proportional to
p,=X,p is the number density of species These equations LS surface area, i.e.,
can be solved only in combination with a further relationship

2
betweenh,z(r) andc,z(r). The formally exact expression 2,(0)=2 (L (10)
of this “closure” is 2 92| (),
Cop(r) =X — (KgT) " MUyp(r) + y,5(r) +Bop(r)]—1 wherez,, is the valency of the macroions having diameter

(8) (o),. Both size and charge distributions of the macroions are
therefore governed by a single independent variable, namely,

whereu,4(r) is the interparticle potentiakg is Boltzmann's ~ the macroion diameter. The polydispersity of the macroions

constant, T the absolute temperaturey,g(r)=h,z(r) can thentl:t)e expressed bymnlgr fraction dgnsny. furjctlgn

—c,p(r) and the “bridge” functionsB,4(r) are functionals ~ P2(0) =Xz f2(0), wheref,(o) is an appropriate distribution

of h,4(r) and higher order correlation functions. In practice, normalized to unit, whiles'=1—x, is the “amplitude” of

however, the exad8,;(r) cannot be calculated, and several p,(o).

approximations proposed for these functions define a corre- In the passage from a discrete to a continuous representa-

sponding series of approximate closuf&4,15. tion of polydispersity, the molar fractions, are replaced by

The possibility of solving analytically the OZ equations dx=p,(o)do, the fraction of macroions having diameter in

depends on both the potential models(r) and the chosen the range ¢,0+do), and the sum& x, - - - become inte-

- ')/a,B(r)1
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grals f[daop,(a)---. The average of a quantity over the  under the implicit convention that,=x5'f (o)A for the
macroion distribution is therefore written as macroion molar fractionX{ o is the grid size in the numeri-
cal integratiof.
1 1
(Y)o= ot V; X,Y,— ot dopa(o)Y(o) IV. APPROXIMATIONS AND EXACT EXPRESSIONS
2 2 2
A. Corresponding states and scaling approximation
= f dofy(o)Y(0), (11 Interparticle potentials are said to be conformal when they

have the same ‘“shape,” and systems with conformal inter-

where £, denotes the set of indices corresponding to theact|ons are called conformal substanf@s Analytically, the

macroion components. The averageYobver the whole set conformality of a set of potentials means that all their ex-
P o 9 b pressions can be generated from a single functional form by
of suspended particles is theqY)==P_,x,Y,=x,Y;

appropriate scaling of distances and potential parameters

+x3(Y)2. (particle sizes, energies, charges, Jetc.
For fy(a)=1(0i(0),,5), we use the Schulz or gamma ~ The simplest example refers to pure fluids, when the po-
distribution tential u, of any speciesy, in a set of substances, depends
A on only two parameters and can be written ag(r)
f(o;(a),s)= 0o le b7 (a>1), (12) =g u(r/o,), whereo, and £q are a characteristic length
I'(a) and energy respectively, whileis a dimensionless function

) ) ) of the dimensionless ratido,,. The form ofu,(r) implies
where T is the gamma functio16], while a=1/s?>, b that all properties of that set of conformal fluids can be writ-
=al(o) are related to the mean valger) and the relative  ten in terms of dimensionless reduced variables, and it leads
standard deviatiors=\(a?)—(o)?/(o), which measures to the “corresponding states principle” commonly found in
the degree of polydispersity (0s<<1). The choice of the textbooks[6]: all conformal pure fluids at the same dimen-
Schulz distribution is a popular one in colloidal theory be-sionless density and temperature have identical dimension-
cause of its mathematical properties. Ber 0, it reduces to less pressure. The RDF of a pure fluid of spediesn a
a Dirac delta function centered &t) (monodisperse limjt group of conformal substances can be written as
For small values 0§, f(o) is similar to a Gaussian distri-
bution, while for larger polydispersity it becomes rather R (1 5 kgT
skewed[17]. Unlike the Gaussian function, the Schulz dis- ga(f,P,T,Uaisa)zg(U—a,P%- e
tribution is defined for positive values of only. Moreover,
this distribution allows a StraighthI‘Wal‘d analytical eVaIUa'Whereé is a universal function for such a group_ If one
tion of simple averages of the kind displayed in Etf). In among these fluids is arbitrarily chosen as reference system
particular, the2 first threezz moments of thesdiStribUﬂbéQU) and its properties are labeled with the subscript 0, then its
are 2<">2é<‘7 )2=(1+8) ()2, and (0%);=(1+8) (1 potential is ug(r)=eol(r/op) and its RDF is given by
+225 ){o)3, while L_lse of Eq.(10) yields <z>2_=z<l,>_2(1 o1, Ti00,80) = (oo pos keTlso). From Eq. (16)
+57). These analytical results can be conveniently insertedne then gets
into the expressions for the electroneutrality and the packing

: (16)

a

fraction #, i.e., 9a(Ti0. Ti0 0 8) =Go(Nal :pIN3 T/ €, 00,80), (D)
X121+ x$4(2),=0, (13  where we have introduced dimensionless scaling factqrs
=oy/o,andé,=e,/eo. This result is tantamount to saying
77:(77/6)P(X10'§+Xt20t a3),). (14) that if one knows the RDF of a reference fluid characterized

by potential parametersy,eq, then it is possible to derive

The microion packing fraction is;lz(w/6)pla§, while its the RDF of any conformal fluid of spe_ciee, with potentia_l

. o tot/ .3 . ot  parameters,,e,. The value ofg, atr in a thermodynamic
macroion  counterpart isy,=(m/6)p; o Jo. With p2"  grate o T) is equal to the value af, at thescaleddistance
=pXz . From Eq.(13) andxz =1-x,, one then gets \,r, in the corresponding statdp/\3,T/¢£,) with scaled
density and temperature. For instancesif>oy and ¢,
>g,, then the corresponding state has a greater density and
a lower temperature. Using the definition of the potential of
mean forceW=—kgT Ing, EqQ.(17) could also be cast in the
form

-1
, (19

(1 Z >_1 1 z
x.=l1-— ={1-—
! <Z>2 Z<a.>2(1+52)

which shows thak; is fully determined byz; and(z), (or
equivalentlyz,, z.),, ands). W (10, T504.80)=Wo(N i p/NS TIE, 09,80). (18)

A final remark is in order. In evaluating the averages of
more complex quantities any analytical integration become&or pure fluids then conformality of the potentials implies
a formidable or impossible task and numerical integrationconformality of the potentials of mean force and hence of the
brings back to discrete expressions. For this reason, in theDFs. The potential of mean force between two particles is
following we shall continue to employ the discrete notationthe sum of the direct pair potential plus an indirect interac-
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tion, due to all th(_a remair_ﬂ_ng_ fluid pqrticle; and averagedglﬂ(r):ggi;(ggi;r/gm), B e &, for microions-macroions,
over all their possible equilibrium configurations. Finally, a g S(N=00(05" 0 ,p), @,Be&, for macroions-
similar property holds true for the structure factors as well maacroions.

- B 1 3 ) Our choice ofx 4 for scaling the distances implies that,
Sal@:p T3040 ,20) =So(Mo A3/, T/Ea 00, 80)- (19 when r<o,gz, oneﬁ getsr(’wz)\aﬁr<oﬁ{2mﬁ and conse-
quently ensures the correct hard core conditigng(r)=0
The scaling correspondencedrspace is that the value &,  forr<o,s. The excluded volume effects, very important for
atq is equal to the value of, at \, q (in a different ther-  the structure of condensed phases, are thus properly taken
modynamic state into account by the SA. _
On the other hand, for mixtures conformality of potentials ~ Since the Fourier transform ofhﬁ:”m (Ngpr) is
does not necessarily ensure conformality of RDFs in th —3f;bin “br
same simple way. Nevertheless corresponding-states argu<? ™Ma™ . MaMp
ments have often been exploited in the liquid state theory, to- pb'”\/Xm'ZXrﬁzhrﬁzmﬁ- Under the assumption that”"=p

postulate approximate conformality relations between mix-and upon using Eq$3) and(20) one then obtains
ture and pure RDF$§18,19. Only recently, however, this

B()\;ﬁlq)y it is clear that Sﬂzmﬁza‘mum

kind of approach has been applied to polydisperse fluids and

a scaling approximationiSA) has been proposed for non- SA_ s 4 XaXp | ~3r cbin -1 _

ionic colloidal suspension&]. In the SA theory is possible Sap(A)7"= Oup xm”xm”)\aﬁ Smmg(Nap®) = Om,my],
to obtain rather accurate structure factors for a “polydisperse o P (22)

one-species” fluid of uncharged spherical particles, by first

evaluating the RDFg, of an appropriate “monodisperse bin ) )
one-species”(pure reference fluid and then generating all Whereé Sy, (q) s a shorthand  notation  for
the p(p+ 1)/2 different RDFs of the mixture by taking the Sﬁq'zmﬁ(q;p,T;al,zl,ag'“,zg'” , which will be exploited
values of the singlegy at suitably scaled distances. The hereafter unless otherwise specified. Equatinwithin this
present work is aimed at extending this SA scheme to polyapproximation, takes the form

disperse ionic colloidal suspensions. It employs two-species

fluids with both positive and negative ions, in order to satisfy

SA_ 2 bin, .\
the electroneutrality condition. As a reference system for the Sm(Q)™"=1+xwi(a)[ S () —1]
“polydisperse binary” fluid a suitable “monodisperse bi- < X
nary” (M2) mixture is required, where species 1 coincides FxPy N Ze 2B\ (q)W4(q)
. . . . . . 2 tot Ltot '@ B
with the microions and has their density, size, and charge acéy By Xy X
(p°M o2 2™ = (p;,01,21), while the distribution of mac- s
roions is replaced by a single “average” componésyecies | ZeB bin| TaB | 4
2) with parametersg5™, 5", 25" . The choice of this refer- b 2 Uginq
ence fluid will be discussed later. Note that the set of param-
eters 2", p5" ;D" 22" o5 75" can be reduced to - Xg
(p""T;04,2,,09",25"), sincext™ is automatically fixed by +2x1%; 'Wl(q)ﬁggz XTotWB(Q)
the charge ratio through the electroneutrality condition as 2
bin_ 1—7./ bim —1 3
xp =(1-2,/z7) . o . 918 | bin[ T18
Our approximation consists in assuming that all RDFs of —oin| S12| pind |- (23)
012 012

the polydisperse ionic mixture are conformal with the RDFs
of the monodisperse binary fluid, which means that
Equation(23) is the basic result of the paper. It provides an
gaﬁ(r;p!X!T;{U}/ﬁ}!{zyﬁ}) expression for the measurable structure factor of the original
___bin . . bin _bin polydisperse binary mixture, once that the partial structure
=Om,m,(Nap P T:01,21,0%7,25 ) 0 faciors of the reference monodisperse binary mixture are

known. In the limit of vanishing charges and no microions it

where X, {o,s}.{z,s} represent the complete set of molar yeyces to the one found in REF). The scattering intensity
fractions and potential parametersp®'=p, A,z

fract : o, Parame s per unit volumeR(q)S” is then obtained by multiplying
=Z-n,||2mB/O'aB,d with O'n:r;mﬁ=(0'n:2+ O'n.:g)/z, a,,B SM(q)SA by p(FZ(q))
=1,...p, an

1 when v=1, B. Choice of the monodisperse binary mixture

m (21)

14

As reference system, we select a monodisperse two-
component(M2) mixture which mimics the polydisperse
[£, was already defined in Eq11)]. The correspondence p-component fluid. We assume that species 1 coincides with
law (20) provides the recipe for generating all tp§p  the microions and hence p{", 2", 25" =(p;,01,21),
+1)/2 independent RDFs of the polydisperse fluid startingwhich implies the equality of the microion packing fraction,
from the three RDFs of the monodisperse binary mixture. li.e., 72"=7,. Then we replace the polydisperse macroion
explicitly readsg,;(r)=g""(r) for microion-microion pairs, ~species, containing—1 components, with a monodisperse

“ |2 when veé&,
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macroion species 2, containing a single “averaged” compo4ension to polydisperse ionic colloids of the “decoupling ap-
nent. To determine its parametefs (', oo™, z5™, we require  proximation” (DA), proposed by Kotlarchyk and Ch¢20]

that for nonionic fluids and well known to the small angle scat-
b 1ot tering ex'pe'r'imentalists. The EDA may a'Isolbe regarded as a
P2 =Pz, special limiting case of the binary substitutional model pro-
pgin(a_gin)3:pt20t o), p(_)sed by Nge_le et al. [21] fo_r a differ_ent colloidal _mo<_jel
bin_bin with two polydisperse macroion species and no microions.
p1zitpy Z; =0. (24

The first two equations guarantee that the total number of D. MSA closure and analytic expressions
maCI’OionS and theil’ paCking fraCtion in. the M2 miXture are The expressions we have previous'y derived for SA’

the same as in the polydisperse fluigd{'=7,); the third  EDA, and M2 are clearly independent of the approximate
one is the electroneutrality condition for M2 mixture. Com- “closure” chosen for solving the OZ equations. One then

bining Eq.(24) with p?"=p,, one finds the solution expects that an improvement in the selection of the closure
bin bin would provide increasingly accurate results for the polydis-
pP"=p and Xy =X, perse colloidal suspension. In the present paper we shall fo-
o= (g)3? cus mainly on the MSA closure, to take advantage of its
2 2 . . . h .
bin analytical properties. Another example will be considered in
2o"=(2),. (25)
2 =(2)2 Sec. VC.

For the PM, the MSA consists in adding to the exact hard
sphere conditioy,5(r)=0 orh,z(r)=—1 whenr <o g,
the approximate relationshiglosure

In this way, the definition of the set of M2 mixture param-
eters " T;01,2,,09",25") is complete.

Choices other than E@25) are clearly possible. We have
explicitly worked out few of them and found that they do not Caplr)= —(kBT)fang(f) for r>o0,, (28)
significantly alter the final numerical results. Equati@)

nguigfgh?gﬁ:glF?::;glrep%:?at?gnthe basis o fts simplicity anOIWhich is asymptotically correct far—o. The advantage of

In addition to being used as a reference system for SA, th e MSA closure is that the. corresponding OZ equations for
M2 mixture may itself be regarded as the simplest approxi—t e PM dwg.lre s;)lzved aTalytéICi‘/lllé :ome times E[? ?hena-
mation to the polydispersg-component fluid. The corre- ore and Blum22] employe €Xpressions for the par-

sponding measurable structure factor would then be tial structure factorss, 5(q) to_cglculat.e numeri_call)‘s,\,!(q)
for charged hard spheres wittither size polydispersityor

Sw(@)M2=1+x,w3(q)[ () — 1]+ xPTws"(q)]? charge polydispersity. More recentlycisedMSA formula
for Sy (q) by-passing the explicit calculation of the partial
X[SI(q) — 1]+ 2 X X, ()wWh(q)S(q).  structure factors was obtained in R¢L2]. This was the
extension to ionic systems of an analogous expression for
(26) polydisperse uncharged hard spheres in the PY approxima-

which simply corresponds to approximate the original po|y_tion [23]. For the sake of completeness, the MSA analytic

disperse binary mixture with a plain monodisperse binany£XPression for the scattering intensity is reported in the Ap-
mixture. pendix where some misprints appearing in R&g] are also

corrected. The MSA closure yields analytic expressions for
both Sﬁqzmﬁ(q) and Sy,(gq) depending on a single screening

arameter P, which in turn has to be determined self-
onsistently.
A well known drawback of the MSA is that, for dilute

a8 solutions of highly charged particles, it may predict unphysi-
=1 everywhere. The result corresponds to an approximatiop| negative values fay, 4(r) near the contact distance,
which provides an exact evaluation of all form factors of theOr in a neighborhood (L)lfﬁthe first minimum. Some progosal

polydisperse system but assumes that the RDFs can be 'frave been advanced to heal this restricfied—26. For sim-

placed by a set of only three effective RDFs of a monodis, licity, however, the emphasis of the present work will be

perse binary ionib(i:nfluid. Hence, in H,]]e previous language w ainly on concentrated suspensions of weakly charged par-
have g1x(r)=011(r), 915(r)=012(r), and Gaus(r)  ticles. In this regime the MSA is reasonably accurate, with

C. Extended decoupling approximation

To emphasize the role played by the scaling of distanceg
in the SA, let us consider the simpler case of no scaling. This
can be obtained from the SA expressions by setting

=0z, (r) for micro-micro, micro-macro, and macro-macro the Coulomb part of the potential being only a perturbation
ionic pairs, respectively. Equatid@3) simplifies to with respect to the hard sphere one. The above remark is
EDA_ > bin, .\ tot 2 nevertheless by no means a limit to our method which could
Sw(Q)™"=1+xw(9)[S11(a) ~ 1]+x5w(a))3 be easily associated to more accurate closures such as the
TSP g) — 17+ 2 /X, X108 “hypernetted chain approximation(HNC), corresponding
[S22(0) . ] X Wa(Q) to takeB,4(r)=0 in Eq. (8), or the self-consistent mixing
x(w(q))zsll’g’(q). (27 scheme(HMSA) proposed by Zerah and Hansen for poten-

tials with attractive term¢$14,15. Clearly, in the HNC or
The superscript EDA means extended decoupling approxiHMSA integral equations the monodisperse binary reference
mation, since this approximation may be reckoned as an exuid can be treated only numerically. This point will be fur-
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ther discussed in Sec. V C where an example of such calcu- 2.0
lation will be provided for the HNC. i

jelele)
whL @
~

V. NUMERICAL CALCULATIONS 1.5

In order to display the behavior of the scattering functions _
under some typical polydisperse conditions, we numerically £
reproduced a realistic experimental environment. The micro- & 1-0
ions were given a valencyg;=+1 and a diametero; %
=5 A (solvated counterions while we used an average
macroion size(a),=100 A with relatively small charges 0.5

Z(o), in the range— 20 to O(in e units) to ensure meaningful

MSA results as previously discussed. We will increase this
value up toz,),=—50 later on using HNC. The scattering

due to the microions is in principle not completely negligible
and it might be also characterized by a different contrast with
respect to the macroions. Nevertheless both contrasts were FIG. 1. Polydispersity effects. Exact MSA structure factor

her_e fixed to the_ same valubn=4>_< 10 cm 2 which IS Su(q) of polydisperse charged hard spheres, at fixed packing frac-
typically foqnd in neutron scatter.lng from silica particles 4., 7=0.3, for different degrees of polydispersisy(s=0 corre-
suspended in watd27]. In evaluating the form factors we sponds to the monodisperse binary ga@ther parameterse,
further assumed;**'= o, for all particles. A room tempera- =5 A, z,=+1 (e units for microions: (0),=100 A, z,
ture T=298 K and the dielectric constagt="78 of water  _ 20 for macroions.

result into a valud.g=7.189 A for the Bjerrum length. All

numerical calculations were performed for packing fractions ) .
7=0.1, 0.3, and polydispersity=0, 0.1, 0.2, and 0.8the through a repulsive screened Cou!omb interact{@&, and
first value corresponding to the monodisperse binary mix!n€y were already recorded even in the P22].

ture). We note that whes=0, it is necessary to taMalz)in| . Next we check the effect o’{/lgle charge. Thisf is reported in
Fig. 2, where the Sy(q) corresponding to 7@

<30 for »=0.3 and|z5"| <10 for »=0.1, to avoid unphysi- 0.3, 2y,=~20, $=03 is compared with that of the
3, 2, , :

cal negative values of the MS biZ“ at contact. i . )

The three Schulz distributions, with polydispersisy polydisperse mixture of neutral hard spheres which results
=0.1, 0.2, and 0.3, were discretized with a grid sizeffom “switching off” all charges and leaving all other pa-
A0/<(’T>2:6 02 and truncated at,/(c),=156, 2.22, and 'ameters unchanged. As the charge increases, the main peak
2.96, respectively. These,,, values correspond to polydis- 2€comes higher and shifts to smalgralues, since its po-
perse mixtures with a number of macroion components equ ition s ess_entlally det_ermlned by the macrolon-macroion
to 79, 112, and 149, practically intractable with the availableequ'“b”um distance which becomes larger in the presence of
algorithms for solving IEs numerically. electrostatic repulsions. The difference in the:0 behavior

is also evident: the charges lower t8g(q) values near the

o’>2:

A. Polydispersity and charge effects in exact MSA results
1.5 | ,

Before analyzing the performance of the SA and other
approximations, it is useful to recall how size and charges
polydispersity affect the measurable scattering structure fac
tor. This is achieved by using the closed analytical expres:
sion for Sy (g) which is given in the Appendix which is
exact within the MSA.

Figure 1 depicts the effects of polydispersity on the mea-
surable structure factog,(q)S” is plotted as a function of
the dimensionless variabl® o), for increasing values of
and fixed »=0.3 andz<0>2:—20. We note that as in-

creases at fixed), p decreases. As expected, the effect of
increasing polydispersity is threefold) the oscillations on
the tail of the curves are greatly reduced as a consequence
the destructive interference stemming from the several lengtl
scales involved(ii) the first peak is lowered, broadened and
shifted to smalleq values corresponding to a larger typical
distance between macroions-macroions nearest-pairs, and FIG. 2. Charge effects. The exact MSA structure fa8g(q)

(iii) the g—0O limit is increased since highly dispersed par-for polydisperse charged hard spheres with= 0.3,2(p),
ticles can be more efficiently packed. All these effects par—=—20, s=0.3 (other parameters as in Fig) i5 compared with its
allel those observed in polydisperse nonionic flJidd 7] as  exact PY counterpart for the corresponding polydisperse mixture of
well as in mixtures constituted of only macroions interactingneutral hard spheres.

a(o)s
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FIG. 3. (a) Structure factor Sy(q) for %=0.1, 2,
= —10, s=0.1 (other parameters as in Fig). Comparison of M2-
MSA, EDA-MSA, SA-MSA, and exact MSA resultgb) Same as
(a), but fors=0.3.

FIG. 4. Scattering intensity per unit volunmig(q), using a log-
log scale. Comparison of M2-MSA, EDA-MSA, SA-MSA, and ex-
act MSA results. The systems are the same as in Figa)3z
=0.1,z<,,>2= —10,s=0.1. (b) Same aga), but fors=0.3.

origin, as a consequence of the long-range nature of the Cou-

lomb potential. overall rather well in all regions.
In Fig. 5 the same functions of Fig. 3 are then plotted for
B. Scaling approximation plus MSA a more concentrated suspension and higher macroion charges

Our aim is now to display the performance of the SA(”:O'3 andz<g>2=—20), again fors=0.1 and 0.3, while

when the partial structure factog"  (q) of the reference the corresponding results fé(q) are displayed in Fig. 6.
aMp i i i i -
M2 mixture are evaluated using the MSA closure. Thes Figures a) and 5b) yield compelling evidence of the po

SA-MSA results are compared with the exact MSA solutiorﬁentla“ty of the SA confirming the previous remarks. It is

for polydisperse charged hard spheres previously discussed.
We shall comment in the next subsection on a method we
envisaged to avoid unnecessary repetitions in the IE calcula-
tions for the M2 mixture.

In Fig. 3 the structure facto®,(q)SA™MSA is shown for
two different degrees of polydispersitg£0.1 and 0.3) at
low concentration and under weak charge conditioms (
=0.1 andz<,,>2= —10). The corresponding results from the

M2-MSA and EDA-MSA approximations are also reported
for comparison. As expected, at small polydisper$Fjg.
3(a)] there are very little differences among all these curves,
although the EDA yields a somewhat larger value $g(q
=0). This overestimation of the log- scattering in the
EDA becomes much larger as polydispersity incredbegs
3(b)]. This is the same qualitative trend resulted in the DA
for neutral system$1,3,7,29. At s=0.3 it is apparent that
the position of the first peak in the EDA follows that of the
M2, whose maximum is shifted to largervalues with re-
spect to the MSA result. On the other hand, the SA repro-
duces more accurately the position of the first peak and fol-
lows very closely the correct curve fo o),=6. 9{o),

The discrepancy in the low-region, which is in fact the
most interesting from the SAS point of view, can be more FIG. 5. (a Structure factor Sy(q) for 7%=0.3, 2y,
clearly seen in Fig. 4, where the scattering intensity per unit= — 20, s=0.1 (other parameters as in Fig). Comparison of M2-
volumeR(q), calculated for the same parameters of Fig. 3 iSMSA, EDA-MSA, SA-MSA, and exact MSA result$b) Same as
displayed on a log-log scale. Nevertheless the SA performé&), but fors=0.3.




6730 GAZZILLO, GIACOMETTI, AND CARSUGHI PRE 60

107 1.5
S (a) -
[ __r I L), = —50
TE - e
o C
~— s}
10 3 1.0
O —~
& 3 =
F =
C : A
1072 L il Eu
S (b) 0.5
—~~ 102 E — — . o~
0
:
S e — - SA-MSA
/—\100%_' 0.0lllrllllllllll
= F— 0 0.00 0.05 2 ,010 0.15
& -
(- - EDA
El—- sA q (A7)
[ |— Exact MSA H L.
1072 PRSI VY RN SN MUY {1 M- SRR WRTY FIG. 7. SA-HNC predictions for the structure facty(q) at
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q (/& ) as in Fig. 2. In the z;,y,= — 10 case the corresponding SA-MSA

o ] ] ] curve is also plotted for comparison.
FIG. 6. Scattering intensity per unit volumig(q), using a log-

log scale. Comparison of M2-MSA, EDA-MSA, SA-MSA, and ex- . . . . .

act MSA results. The systems are the same as in Figa)5y high Charges, in WhICh the MSA vyields negative values of the_

=0.3,2(,,= —20,5=0.1. (b) Same aga), but fors=0.3 macroion-macroion RDF at contact and hence cannot be uti-
1Z(0), , 1. , 3.

lized. This drawback is avoided by using the HNC closure.

useful to analyze these results in the sequence-NEDA In both cases we solved the HNC equations for the pa-
—SA. In Fig. 5a) Sy(q)E°* exactly coincides with rameter values of the corresponding M2 reference mixture,

Sy(q)M2 in the first peak region, but differs from it at the USiNg anr-space grid size\r/(o),=0.02 and a number of
locations of the M2 minima and at smajlvalues. On the 9rid points N=4096. This choice implies thagj (o),
contrary, the SA curve is close to the exact MSA one every=50m, with a small enough grid size im space,Aq
where. In Fig. %b) the M2 approximation largely disagrees =0ma /N, allowing the implementation of a “trick” pro-
with the MSA one. The EDA improves here on the M2 sinceposed in Ref[7] . In fact, the expression fdBy(q)>4, Eq.

it takes all form factors of the polydisperse fluid correctly (23), would require, at each, the evaluation of one term
into account. It exhibits a lower peak height and practicallyStl’T(q), p—1 termsS'{E‘(qalB/o'{g‘) and (p—1)p/2 terms

no subsequent oscillations. Nevertheless, the EDA has a dr&}(qo s/ 5" (recall thatp—1 is the number of macroion
matic low-q overestimate and it behaves poorly in essentiallycomponents These cumbersome repeated calculations can
all regions. On the contrary, the SA is fairly accurate in thepe avoided. We calculateg?™", S, and Soi' at the grid
whole experimentally accessibiprange. Its performance at pointsg;=iAq(i=0, ... A/—1) only once storing all these
n=0.3 appears to be even more accurate thap-ad.1. Al values in arrays. Although the grid poings do not exhaust
these features are quite remarkable |f'we recall_that the SAhe whole set oﬂam/o?izn andqaaﬁ/agi” values required in
EDA, and M2 curves have been obtained starting from thg=q_(23), the stored structure factors represent a fine sam-
same partial structure faCtO'S?q'Zmﬁ(Q)- This fact clearly  pling of these continuous functions. Therefore, if the is
shows the crucial role played by the scaling of the distancesmall enough, the value 1i2“ (or biZ”) at a certain point can

Its effect is to shift the first peak position to the right location be approximated with that at the nearest grid point with a
and to dump all oscillations after the first peak. Physically itnegligible error. In this way the sums of ER3) can be
confirm the soundness of our “conformality” hypothesis as quickly performed.

expressed by Eq20) and it shows that overlooking differ- Figure 7 shows th&,(q)SANC curves, along with the
ences among macroion-macroion RDFs at contastit is SA-MSA one for Z(»,= —10. As expected, in the lower
done in the SAis a reasonable assumption. charge case the SA-HNC prediction is very close to the SA-
_ o MSA one, with only a slight shift in the first peak position.
C. Scaling approximation plus HNC The SA-HNC structure factor wittg,),=—50 is not a

To illustrate the possibility of applying the SA scheme trivial result: it refers to a polydisperse colloidal system with
even when the OZ equations admit only numerical solutionsmean size ratiar,:{o),=1:20 and meartabsolut¢ charge
we investigated SA with the HNC closure and analyzed twaoratio |zl|:|z<(,>2|=1:50. Unfortunately, in this case we can-
casesn=0.1,5=0.3 with ) = —10 andz,),= =50, re-  not make a comparison with “exact” data. On the other
spectively(all other parameters were fixed as bejohile  hand, the lack of these data and the difficulty of generating
the first case was already studied with the SA-MSA, thethem in a very asymmetric regime is just the strongest mo-
second one represents a situation, of low concentration and/ation for introducing approximate theories such as the SA.
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VI. CONCLUDING REMARKS to an effective mixture with a very small numbet of com-
ponents. In this case, however, we expect a nontrivial in-
In this paper the problem of computing scattering func-crease in the numerical effort involved. In fact, to avoid the
tions for polydisperse ionic colloidal fluids has been ad-rapid increase in computational cost with increagingn the
dressed by integral equation methods. In the framework oP’Aguanno-Klein mixtures, that approach was recently
the primitive model we have shown that, despite the comMmodified by Lado and co-workers by adding an orthogonal
plexity of these systems, surprisingly accurate prediction®olynomial expansion techniqugg0], and afterwards by
can be obtained with a limited numerical effort. We haveMerging this with a thermodynamic perturbation scheme
successfully extended treealing approximatiorintroduced _[31]. A comparison of the SA with these alternative theories
in Ref. [7] for polydisperse fluids of neutral particles. The IS left to future work.
SA still works well when Coulombigboth repulsive and
attractive interactions are present, notwithstanding the ACKNOWLEDGMENTS
strong charge-size asymmetries of the polydisperse colloidal

regime. Only the study of an appropriate monodisperse bi(—j Illz'lLTa_nual_t‘supp:jorltl f“F’;T‘ the I;al_lant_fl_\/IURS?_\/llnlstlerq
nary mixture (the M2 reference systems required for a elfUniversita e della Ricerca Scientifica e Tecnologica

complete characterization of the polydisperse system. through the INFM(Istituto Nazionale di Fisica della Mate-

Our corresponding states theory is based on the simplr Z.i) IS gratefully apknowledged._ One of UB.G) 'Fhanks
physical idea of conformality of all RDFs in the polydisperse 1orgio Pastqre(Trleste) and Enrique LombaMadrid) for
mixture. All partial structure factors are generated by scalingDrovldlng theiriNC computer codes.
their three counterparts of the M2 fluid. In the liquid state
theory similar ideas have been widely exploited in the pastAPPENDIX: MSA EXPRESSION FOR THE SCATTERING
[18,19 but, to our knowledge, Ref7] and this paper are the INTENSITY
first application to polydisperse fluids.

Clearly, the SA theory is accurate only in the average. N,
fact, the scaling is hardly accurate for each individual pairh
correlationg,g(r). In particular, it incorrectly assumes the
equality of the RDFs at contact for all macroion-macroion
pairs as well as for the microion-macroion ones. However, p
an essentiz_al f_eature of our SA is that it correctly ensures {Ylo= > p,Y,=p(Y), (A1)
J.5(r)=0 inside the hard cores. These excluded volume v=1
conditions are crucial, as it is shown by the failure of the
“extended decoupling approximation” which neglects them. P A ,

The structure factor§y(q)S” turn out to be accurate in the {Y}= 21 p,Y,e%r=p(YeX), (A2)
first peak region and beyond; some inaccuracy, due to the "

harsh approximations of our theory, is found at lgwalues.
Since theq—0 limit is related to thermodynamics, this
means that the SA can be meaningfully exploited to extra
structural but not thermodynamical predictions.

Because of its simplicity, the SA can be safely employed p
also when the OZ integral equations have to be solved nu- (2I')2=4x7Lg Y, p,
merically since its application to both different closures and v=1
different potential for ionic colloids is feasible. These fea-
tures are indicative that SA is a useful theoretical tool towhere
investigate, to first approximation, the structure of polydis-
perse(nonionic and ionig colloids under highly demanding = _T
conditions. The existence of a good approximation which 20
reduces the study of polydisperse fluids to that of an effec-
tive monodisperse one should not be underestimated. Real -
life colloids are always polydisperse to a certain degree and Q=A+ 5
polydispersity always represents a challenge in the interpre-
tation of experimental data. We hope that the SA will result N )
particularly useful in the analysis of small angle scatteringith A=1—7. These quantities are also required to com-
data, since it considerably outperforms the “decoupling aputé
proximation,” popular in this context, at the cost of a mini- )
mal additional effort. _Lgz,~P0/2

It would be interesting to compare our theory with the T 1+4To,
approach proposed by D’Aguanno and KIg#j. As already
mentioned in the Introduction, these authors followed a dif-n the limit of point ions(all o,—0), 2I' becomes the De-
ferent point of view and replaced the continuous Schulz disbye inverse shielding lengtky of the Debye-Huakel theory
tribution with an histogram containing a finite number of for electrolyte solutions, while for finite size ions it is always
well-chosen diameters, thus reducing the polydisperse fluid lower boundi.e., 2I'< kp). We also need

In this appendix we report the basic formulas involved in
e MSA calculation of the scattering intensity from charged
ard sphere fluids, as described in R&2]. Let us introduce
the following short-hand notations:

whereX,=qo,/2. The MSA analytical solution depends on
}nhe screening parametef’2 which must be determined nu-
¢ erically by solving the consistency equation

z,— P,02/2\?
— (A3)

1+To,

oz
14T o

(A4)

0

(A5)

o2
14T o 0’

(AB)
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To P, where
=i (A7)
Ri={F?}o+{a}olcs|*+{B%}olcal?
2
B,= mzrzp”, (A8) +2 Re{Fa}oCi+{FB}oCot{aB}ociC5 ],
(A13)
(O)_27Ti I?
v q Lg Aot (A9) Ry={lav|?}olcs|*+2 R {qyF}ocs+{gya}tocsct
+{qvB}oCsC3 1. (Al4)
y 2w T . . .
M= —— A Xy, (A10)  Here,F, is the form factor given by Eq2), Rg - - - ] the real
q Ls part of a complex number, and the asterisk denotes complex
_ 0. (1) conjugation. Other necessary quantities appearing in these
V=YY (ALl gquations are
where ¢,=jo(X,) and ¢,=3j1(X,)/X,, with jo(x)
=sinx/x and j;(x)=(cosx—xcosx)/x* being Bessel func- t t t
. 2 3 4
tions. CGi=r G CaTr (A15)
The final expression for the scattering intensity per unit of 1 1 1
volume is )
tm(m=1,...,4) being the cofactor of the (h)th element
R(q)=R1(q)+Ry(q), (A12) of the first row in the following determinant:
|
P, o, o, Py,
{F}  1+{a} {B}—3&/A+iq2 {gy@y-2iTP,A
o , (AL6)
{oF} {oa} 1+{op} {oay©}
{AF} {Aa}  {AB} g+{Agy}+2ir

and whereg,= (/6){a?},.

Equationg/A4) and(A16) correct the misprints appearing in the corresponding equations of B&fIn the expression of
P, given by Eq.(48) of that paper the factor was omitted. We also note that our definitionRyfand() differs from Blum’s
original one[8].
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