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Corresponding-states approach to small-angle scattering from polydisperse ionic colloidal fluids
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Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding-
states approach. This assumes that all pair correlation functionsgab(r ) of a polydisperse fluid are conformal to
those of an appropriate monodisperse binary fluid~reference system! and can be generated from them by
scaling transformations. The correspondence law extends to ionic fluids a scaling approximation~SA! success-
fully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a
continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by
solving the Orstein-Zernike~OZ! integral equations coupled with an approximate closure. The SA is first tested
within the mean spherical approximation~MSA! closure, which allows analytical solutions. The results are
found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown
to be an improvement over the ‘‘decoupling approximation’’ extended to the ionic case. The simplicity of the
SA scheme allows its application also when the OZ equations can be solved only numerically. An example is
then given by using the hypernetted chain closure. Shortcomings of the SA approach, its possible use in the
analysis of experimental scattering data and other related points are also briefly addressed.
@S1063-651X~99!07112-3#

PACS number~s!: 05.20.Jj, 61.10.Eq, 61.12.Ex
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I. INTRODUCTION

Colloidal suspensions of charged particles represen
special class of ionic fluids@1–3#. Unlike solutions of simple
electrolytes such as NaCl, charged colloidal suspensions
highly asymmetric mixtures, containing both macroions a
microions with large size and charge differences. Moreov
macroions often exhibit ‘‘polydispersity,’’ which means th
particles of a same chemical species are not necessarily
tical, because their size, charge or other properties ma
spread over a large spectrum of values~chemical species
whose particles are all identical are then referred as ‘‘mo
disperse’’!. The presence of only one polydisperse macro
species is sufficient to make the colloidal suspension a m
ture with a very large numberp of components. The peculia
features of this ‘‘colloidal regime,’’ namely, asymmetry an
polydispersity, give rise to a variety of phenomena conce
ing microscopic ordering, phase behavior, diffusion, and
on.

Experimental information on the structure of such flui
can be obtained from small-angle scattering~SAS! tech-
niques, by using light, neutrons or x rays. However, whe
significant degree of polydispersity is present in the sam
the interpretation of experimental data for scattering inten
is hardly a simple task. In fact, polydispersity and large si
charge differences represent a serious challenge to the a
able theoretical tools. Monte Carlo or molecular dynam
simulations for polydisperse colloidal fluids involve ve
large numbers of particles. Moreover, large size asymme
at high densities may cause ergodicity problems. On
other hand, integral equations~IEs! of the liquid state theory
are analytically solvable only under special condition
whereas their numerical solution for mixtures with lar
PRE 601063-651X/99/60~6!/6722~12!/$15.00
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numbersp of components, such as the polydisperse on
would require large systems of nonlinear equations. A
consequence, apart from very few peculiar cases@4#, IE nu-
merical studies on multicomponent fluids are usually
stricted top!10. Finally, under the highly demanding con
ditions of colloidal suspensions nonconvergence problem
the algorithms may often arise.

The present paper will focus on the effects of polydisp
sity in SAS from ionic colloidal mixtures, in the framewor
of IE theories based upon the Ornstein-Zernike~OZ! equa-
tions with approximate closures. Our study refers to the s
plest polydisperse case with only two ionic species: mo
disperse microions and macroions with both size and cha
polydispersity. We shall refer to this system aspolydisperse
binary ~two-species! ionic mixture.

To overcome the impossibility of investigating polydi
perse systems when IEs have to be solved numerically,
has to reduce the number of components and replace
study of a polydisperse fluid with that of a nearly equivale
but much simpler system. One possibility, not adopted in t
paper, is to neglect microions altogether and approximate
fluid as a system of macroions interacting through a rep
sive screened Coulomb potential, which implicitly takes in
account the contribution of the neglected particles@3#. A
further refinement of this viewpoint@3,5# is to build up an
equivalenteffective mixturewith p8!p new components,
whose molar fractions and diameters are determined by
placing a continuous distribution of macroion sizes with
appropriatep8-component histogram. Usually,p853 is al-
ready sufficient and therefore the problem is reduced to g
numerical solution of IEs for a three-component macro
mixture. This procedure could be easily extended to inclu
monodisperse microions and its counterpart would involv
6722 © 1999 The American Physical Society
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PRE 60 6723CORRESPONDING-STATES APPROACH TO SMALL . . .
four-component mixture~three for the macroions plus on
for the microions!. This method can be expected to be qu
accurate, but it would demand a sizeable amount of num
cal work.

In this paper we present an even simpler approach, wh
requires the solution of only two-component IEs. We sh
show that the problem of a polydisperse binary ionic mixtu
can be reduced to the study of amonodisperse binaryionic
mixture, with microions and all identical macroions. The s
lution for such a reference system is the ‘‘starting’’ point f
several approximations of increasing accuracy. Our m
purpose is to show that, at the end of this hierarchy, accu
approximate scattering functions for a polydisperse bin
mixture can be easily calculated with moderate numer
work upon using a corresponding states theory. Our met
hinges on aconformality@6# argument, which assumes th
all pair correlation functions of the polydisperse fluid ha
essentially the same ‘‘shape’’ of their monodisperse bin
counterparts and can be generated from them by mean
simple scaling transformations. This correspondence law
the extension to ionic mixtures of a scaling approximat
~SA! successfully proposed for nonionic colloids in a rece
paper@7#. This is a nontrivial extension, since the good p
formance of the SA for theshort-rangepotentials of non-
ionic colloidal fluids examined in Ref.@7# ~uncharged hard
sphere and Lennard-Jones interactions! does not automati-
cally ensures the same success in the presence oflong-range
Coulomb attractions and repulsions.

To properly treat both macroions and microions on
same footing, the colloidal suspension will be described
the primitive model~PM! of electrolyte solutions, which de
picts all ions as charged hard spheres embedded in a di
tric continuum representing the solvent. The new SA will
tested, for the PM, against results from an analytic treatm
of polydispersity, which is exact within the mean spheric
approximation~MSA! closure for the OZ integral equation
In the PM-MSA case, the OZ equations were solved anal
cally many years ago@8–11#, and, more recently, a close
analytical formula was obtained for the scattering intens
from charged hard sphere fluids with any arbitrary numbe
components@12#. An essential feature of the SA is that, b
cause of its simplicity, this scheme can be applied equ
well to combinations of potential models and closures
which only a numerical solution of IEs is possible. It
therefore possible for instance, as we shall explicitly sho
to couple the SA with the hypernetted chain~HNC! closure,
which is more accurate than the MSA one for ionic fluids.
these cases the SA becomes a valuable new tool to pr
properties of polydisperse colloidal suspensions in a v
simple way.

The paper is organized as follows. In the next section
basic formalism of the small angle scattering and integ
equation theory is briefly recalled along with the primitiv
model for polydisperse ionic fluid in Sec. III. In Sec. IV ou
corresponding states treatment of scattering functions is
sented in detail, together with two simpler approximatio
The exact MSA analytical expression for the scattering
tensity from charged hard spheres is also reviewed and s
of its predictions for polydisperse fluids will be reported.
Sec. V numerical results from the proposed approximati
are compared in detail within the MSA. The performance
ri-
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the SA with the HNC closure will then be addressed and f
remarks will be included in the conclusive Sec. VI.

II. SMALL ANGLE SCATTERING AND INTEGRAL
EQUATION THEORY

A. Scattering intensity and structure factors

An ionic colloidal solution is formed by macroions an
microions suspended in a homogeneous solvent. Usu
this suspending fluid is formed by very small particles~with
respect to the macroions! and is then modelled as a con
tinuum, characterized by a given dielectric constant and
uniform density of scattering matter.

According to the scattering theory, the intensity of t
scattered radiation~light, neutrons, or x rays! is proportional
to the ensemble or time average ofuñ(q)u2 over all possible
equilibrium configurations of the sample particles. Hereq is
the exchanged wave vector andñ(q) is the three-
dimensional Fourier transform ofn(r ), a quantity related to
the density of scattering matter at the positionr inside the
sample. For neutronsn(r ) is the scattering length densit
n(r )5(kbkd(r2r k), wherebk is the scattering length of the
kth nucleus located atr k andd denotes the Dirac delta func
tion. For x raysn(r ) coincides with the electron density
whereas for light it becomes the refractive index. In the co
tinuum solvent,n(r ) has an uniform valuen0.

In addition to the continuum solvent hypothesis, we a
sume that inside each ion~macroion or microion, indiffer-
ently! the scattering matter has a well defined boundary,
there is ascattering corewith a well-definedscattering vol-
ume, not necessarily coincident with the particle volum
While the former depends on the particle-radiation inter
tion, the latter is determined by the interparticle repulsio
and is well-defined only in the presence ofhard body repul-
sions. The definition of a volume for particles with soft r
pulsions~e.g., Lennard-Jones particles! requires in fact some
arbitrary and nonuniversal convention.

In the case of suspended particles with spherically sy
metric interactions~homogeneous and isotropic fluid! and
spherical homogeneous scattering cores, the SAS th
yields the following expression for the total scattering inte
sity I (q) of a p-component solution in a volumeV @3#:

R~q![I ~q!/V5r (
a51

p

(
b51

p

AxaxbFa~q!Fb~q!Sab~q!,

~1!

as a function of the magnitude of the exchanged wave ve
q[(4p/l)sin(u/2), with l being the wavelength of the in
cident radiation andu the scattering angle. The Rayleig
ratio R(q) is the total scattering intensity per unit volum
@also called the differential scattering cross section and o
denoted by (dS/dV)(q)#. In Eq. ~1! r is the total number
density, whilexn and Fn(q) are the molar fraction and th
form factor of speciesn, respectively.Fn(q) is related to the
distributionn(r ) of scattering matter inside particles of sp
ciesn and we can express it as

Fn~q!5Vn
scatt~nn2n0!

3 j 1~qsn
scatt/2!

qsn
scatt/2

, ~2!
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sn
scatt being the diameter of the scattering core,Vn

scatt

5(p/6)(sn
scatt)3 its volume,nn the uniform scattering den

sity of speciesn, and the differencenn2n0 its ‘‘contrast,’’
while j 1(x)5(sinx2xcosx)/x2 is the first-order spherica
Bessel function. Finally, the functionsSab(q) are the
Ashcroft-Langreth partial structure factors@13#

Sab~q!5dab1rAxaxbh̃ab~q!, ~3!

wheredab is the Kronecker delta andh̃ab(q) is the three-
dimensional Fourier transform of the total correlation fun
tion hab(r )[gab(r )21. Here,gab(r ) is the radial distribu-
tion function ~RDF! between two particles of speciesa and
b at a distancer.

In addition to the scattering intensity, it is then convenie
to define a ‘‘measurable’’ structure factor@3# as

SM~q!5 (
a51

p

(
b51

p

Axaxbwa~q!wb~q!Sab~q!, ~4!

with weights

wn~q!5
Fn~q!

A^F2~q!&
, ~5!

the brackets meaninĝF2(q)&[(axaFa
2(q). The relation-

ship betweenR(q) andSM(q) is

R~q!5r^F2~q!&SM~q!. ~6!

From the theoretical point of view, we will obtain the parti
structure factorsSab(q) by solving IEs for thehab(r ).

B. Integral equations

The OZ integral equations of the liquid state theory
p-component mixtures with spherically symmetric interp
ticle potentials are@14,15#

hab~r !5cab~r !1 (
n51

p

rnE dr 8can~r 8!hnb~ ur2r 8u!,

~7!

where thecab(r ) are the direct correlation functions an
rn[xnr is the number density of speciesn. These equations
can be solved only in combination with a further relationsh
betweenhab(r ) andcab(r ). The formally exact expressio
of this ‘‘closure’’ is

cab~r !5exp@2~kBT!21uab~r !1gab~r !1Bab~r !#21

2gab~r !, ~8!

whereuab(r ) is the interparticle potential,kB is Boltzmann’s
constant, T the absolute temperature,gab(r )[hab(r )
2cab(r ) and the ‘‘bridge’’ functionsBab(r ) are functionals
of hab(r ) and higher order correlation functions. In practic
however, the exactBab(r ) cannot be calculated, and sever
approximations proposed for these functions define a co
sponding series of approximate closures@14,15#.

The possibility of solving analytically the OZ equation
depends on both the potential modeluab(r ) and the chosen
-

t

r
-

,
l
e-

closure. Once that the IEs have been analytically or num
cally solved, the partial structure factorsSab(q) can be ob-
tained from Eq.~3!.

III. PRIMITIVE MODEL FOR POLYDISPERSE IONIC
FLUIDS

We are interested in studying polydispersity effects
properly considering both macroions and microions on
equal footing. The simplest possibility is the primitive mod
~PM!, well known in the theory of electrolyte solutions.
consists of an electroneutral mixture ofp different compo-
nents, represented by charged hard spheres embedded
continuum solvent of dielectric constant«. The speciesa,
with diametersa , has molar fractionxa and electric charge
zae(e is the proton charge andza the valency!. The interpar-
ticle potentialuab(r ) is defined by

~kBT!21uab~r !5H 1` for r ,sab[
1

2
~sa1sb!,

zazbLB /r for r .sab ,
~9!

whereLB[e2/(«kBT) is the Bjerrum length. The electroneu
trality condition requires that̂z&[(n51

p xnzn50.
The PM can also be used for polydisperse colloidal s

pensions. In a ‘‘discrete representation’’ of polydispersity
polydisperse two-species fluid is described by ap-component
mixture (p@1), in which the monodisperse microion
~chemical species 1! are the first component, with diamete
s1, chargez1 and molar fractionx1, while the remainingp
21 components correspond to different varieties of
single macroion species~chemical species 2!. It is often con-
venient to adopt a ‘‘continuous representation’’ of polyd
persity, withp→` and a continuous spectrum of values f
the macroion ‘‘disperse’’ properties~size, charge, etc.!. In
such acontinuous-mixtureformalism, we assume that mac
roions have a continuous distribution of diameterss around
an average one, denoted by^s&2. For simplicity, we make
the further reasonable assumption that the charge polydis
sity of macroions is fully correlated to the size polydispe
sity. This can be easily accomplished@3,4# by choosing the
charge~or valency! of each macroion to be proportional t
its surface area, i.e.,

z2~s!5z^s&2S s

^s&2
D 2

, ~10!

wherez^s&2
is the valency of the macroions having diame

^s&2. Both size and charge distributions of the macroions
therefore governed by a single independent variable, nam
the macroion diameter. The polydispersity of the macroio
can then be expressed by amolar fraction density function,
p2(s)5x2

totf 2(s), wheref 2(s) is an appropriate distribution
normalized to unit, whilex2

tot512x1 is the ‘‘amplitude’’ of
p2(s).

In the passage from a discrete to a continuous represe
tion of polydispersity, the molar fractionsxn are replaced by
dx5p2(s)ds, the fraction of macroions having diameter
the range (s,s1ds), and the sums(nxn••• become inte-
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grals *dsp2(s)•••. The average of a quantityY over the
macroion distribution is therefore written as

^Y&2[
1

x2
tot (

nPE2

xnYn→
1

x2
totE dsp2~s!Y~s!

5E ds f 2~s!Y~s!, ~11!

where E2 denotes the set of indices corresponding to
macroion components. The average ofY over the whole set
of suspended particles is then:̂Y&[(n51

p xnYn5x1Y1

1x2
tot^Y&2.
For f 2(s)[ f (s;^s&2 ,s), we use the Schulz or gamm

distribution

f ~s;^s&,s!5
ba

G~a!
sa21e2bs ~a.1!, ~12!

where G is the gamma function@16#, while a51/s2, b
5a/^s& are related to the mean value^s& and the relative
standard deviations[A^s2&2^s&2/^s&, which measures
the degree of polydispersity (0,s,1). The choice of the
Schulz distribution is a popular one in colloidal theory b
cause of its mathematical properties. Fors→0, it reduces to
a Dirac delta function centered at^s& ~monodisperse limit!.
For small values ofs, f (s) is similar to a Gaussian distri
bution, while for larger polydispersity it becomes rath
skewed@17#. Unlike the Gaussian function, the Schulz d
tribution is defined for positive values ofs only. Moreover,
this distribution allows a straightforward analytical evalu
tion of simple averages of the kind displayed in Eq.~11!. In
particular, the first three moments of the distributionf 2(s)
are ^s&2 ,^s2&25(11s2)^s&2

2, and ^s3&25(11s2)(1
12s2)^s&2

3, while use of Eq. ~10! yields ^z&25z^s&2
(1

1s2). These analytical results can be conveniently inser
into the expressions for the electroneutrality and the pack
fraction h, i.e.,

x1z11x2
tot^z&250, ~13!

h5~p/6!r~x1s1
31x2

tot^s3&2!. ~14!

The microion packing fraction ish1[(p/6)r1s1
3, while its

macroion counterpart ish2[(p/6)r2
tot^s3&2, with r2

tot

5rx2
tot . From Eq.~13! andx2

tot512x1, one then gets

x15S 12
z1

^z&2
D 21

5F12
z1

z^s&2
~11s2!G21

, ~15!

which shows thatx1 is fully determined byz1 and ^z&2 ~or
equivalentlyz1 , z^s&2

, ands).
A final remark is in order. In evaluating the averages

more complex quantities any analytical integration becom
a formidable or impossible task and numerical integrat
brings back to discrete expressions. For this reason, in
following we shall continue to employ the discrete notati
e

-

r

-

d
g

f
s

n
he

under the implicit convention thatxa5x2
totf 2„sa…Ds for the

macroion molar fraction (Ds is the grid size in the numeri
cal integration!.

IV. APPROXIMATIONS AND EXACT EXPRESSIONS

A. Corresponding states and scaling approximation

Interparticle potentials are said to be conformal when th
have the same ‘‘shape,’’ and systems with conformal int
actions are called conformal substances@6#. Analytically, the
conformality of a set of potentials means that all their e
pressions can be generated from a single functional form
appropriate scaling of distances and potential parame
~particle sizes, energies, charges, etc.!.

The simplest example refers to pure fluids, when the
tential ua of any speciesa, in a set of substances, depen
on only two parameters and can be written asua(r )
5«aû(r /sa), wheresa and «a are a characteristic lengt
and energy respectively, whileû is a dimensionless function
of the dimensionless ratior /sa . The form ofua(r ) implies
that all properties of that set of conformal fluids can be w
ten in terms of dimensionless reduced variables, and it le
to the ‘‘corresponding states principle’’ commonly found
textbooks@6#: all conformal pure fluids at the same dime
sionless density and temperature have identical dimens
less pressure. The RDF of a pure fluid of speciesa in a
group of conformal substances can be written as

ga„r ;r,T;sa ,«a…5ĝS r

sa
;rsa

3 ,
kBT

«a
D , ~16!

where ĝ is a universal function for such a group. If on
among these fluids is arbitrarily chosen as reference sys
and its properties are labeled with the subscript 0, then
potential is u0(r )5«0û(r /s0) and its RDF is given by
g0(r ;r,T;s0 ,«0)5ĝ(r /s0 ;rs0

3 ,kBT/«0). From Eq. ~16!
one then gets

ga~r ;r,T;sa ,«a!5g0~lar ;r/la
3 ,T/ja ;s0 ,«0!, ~17!

where we have introduced dimensionless scaling factorsla
[s0 /sa andja[«a /«0. This result is tantamount to sayin
that if one knows the RDF of a reference fluid characteriz
by potential parameterss0 ,«0, then it is possible to derive
the RDF of any conformal fluid of speciesa, with potential
parameterssa ,«a . The value ofga at r in a thermodynamic
state (r,T) is equal to the value ofg0 at thescaleddistance
lar , in the corresponding state(r/la

3 ,T/ja) with scaled
density and temperature. For instance, ifsa.s0 and «a
.«0, then the corresponding state has a greater density
a lower temperature. Using the definition of the potential
mean force,W[2kBT ln g, Eq.~17! could also be cast in the
form

Wa~r ;r,T;sa ,«a!5W0~la ;r/la
3 ,T/ja ;s0 ,«0!. ~18!

For pure fluids then conformality of the potentials impli
conformality of the potentials of mean force and hence of
RDFs. The potential of mean force between two particles
the sum of the direct pair potential plus an indirect intera
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tion, due to all the remaining fluid particles and averag
over all their possible equilibrium configurations. Finally,
similar property holds true for the structure factors as we

Sa~q;r,T;sa ,«a!5S0~la
21q;r/la

3 ,T/ja ;s0 ,«0!.
~19!

The scaling correspondence inq space is that the value ofSa

at q is equal to the value ofS0 at la
21q ~in a different ther-

modynamic state!.
On the other hand, for mixtures conformality of potentia

does not necessarily ensure conformality of RDFs in
same simple way. Nevertheless corresponding-states a
ments have often been exploited in the liquid state theory
postulate approximate conformality relations between m
ture and pure RDFs@18,19#. Only recently, however, this
kind of approach has been applied to polydisperse fluids
a scaling approximation~SA! has been proposed for non
ionic colloidal suspensions@7#. In the SA theory is possible
to obtain rather accurate structure factors for a ‘‘polydispe
one-species’’ fluid of uncharged spherical particles, by fi
evaluating the RDFg0 of an appropriate ‘‘monodispers
one-species’’~pure! reference fluid and then generating a
the p(p11)/2 different RDFs of the mixture by taking th
values of the singleg0 at suitably scaled distances. Th
present work is aimed at extending this SA scheme to p
disperse ionic colloidal suspensions. It employs two-spe
fluids with both positive and negative ions, in order to sati
the electroneutrality condition. As a reference system for
‘‘polydisperse binary’’ fluid a suitable ‘‘monodisperse b
nary’’ ~M2! mixture is required, where species 1 coincid
with the microions and has their density, size, and cha
(r1

bin,s1
bin,z1

bin)5(r1 ,s1 ,z1), while the distribution of mac-
roions is replaced by a single ‘‘average’’ component~species
2! with parameters (r2

bin,s2
bin,z2

bin). The choice of this refer-
ence fluid will be discussed later. Note that the set of para
eters (r1

bin,r2
bin,T;s1

bin,z1
bin,s2

bin,z2
bin) can be reduced to

(rbin,T;s1 ,z1 ,s2
bin,z2

bin), sincex1
bin is automatically fixed by

the charge ratio through the electroneutrality condition
x1

bin5(12z1 /z2
bin)21.

Our approximation consists in assuming that all RDFs
the polydisperse ionic mixture are conformal with the RD
of the monodisperse binary fluid, which means that

gab~r ;r,x,T;ˆsgd%,$zgd%)

.gmamb

bin ~labr ;r,T;s1 ,z1 ,s2
bin,z2

bin!, ~20!

where x, ˆsgd%,$zgd% represent the complete set of mol
fractions and potential parameters,rbin5r, lab

[smamb

bin /sab , with smamb

bin [(sma

bin1smb

bin)/2, a,b

51, . . . ,p, and

mn5H 1 when n51,

2 when nPE2
~21!

@E2 was already defined in Eq.~11!#. The correspondenc
law ~20! provides the recipe for generating all thep(p
11)/2 independent RDFs of the polydisperse fluid start
from the three RDFs of the monodisperse binary mixture
explicitly readsg11(r ).g11

bin(r ) for microion-microion pairs,
d

e
u-

to
-

d

e
t

-
s

y
e

s
e

-

s

f
s

g
It

g1b(r ).g12
bin(s12

binr /s1b), bPE2 for microions-macroions,
gab(r ).g22

bin(s2
binr /sab), a,bPE2 for macroions-

macroions.
Our choice oflab for scaling the distances implies tha

when r ,sab , one gets r ab8 [labr ,smamb

bin and conse-

quently ensures the correct hard core conditions,gab(r )50
for r ,sab . The excluded volume effects, very important f
the structure of condensed phases, are thus properly t
into account by the SA.

Since the Fourier transform ofhmamb

bin (labr ) is

lab
23h̃mamb

bin (lab
21q), it is clear that Smamb

bin 5dmamb

1rbinAxma

binxmb

binh̃mamb

bin . Under the assumption thatrbin5r

and upon using Eqs.~3! and ~20! one then obtains

Sab~q!SA5dab1A xaxb

xma

binxmb

bin
lab

23@Smamb

bin ~lab
21q!2dmamb

#,

~22!

where Smamb

bin (q) is a shorthand notation fo

Smamb

bin (q;r,T;s1 ,z1 ,s2
bin,z2

bin), which will be exploited

hereafter unless otherwise specified. Equation~4!, within this
approximation, takes the form

SM~q!SA511x1w1
2~q!@S11

bin~q!21#

1x2
tot (

aPE2
(

bPE2

xa

x2
tot

xb

x2
tot

wa~q!wb~q!

3S sab

s2
binD 3FS22

binS sab

s2
bin

qD 21G
12Ax1x2

totw1~q! (
bPE2

xb

x2
tot

wb~q!

3S s1b

s12
binD 3

S12
binS s1b

s12
bin

qD . ~23!

Equation~23! is the basic result of the paper. It provides
expression for the measurable structure factor of the orig
polydisperse binary mixture, once that the partial struct
factors of the reference monodisperse binary mixture
known. In the limit of vanishing charges and no microions
reduces to the one found in Ref.@7#. The scattering intensity
per unit volumeR(q)SA is then obtained by multiplying
SM(q)SA by r^F2(q)&.

B. Choice of the monodisperse binary mixture

As reference system, we select a monodisperse t
component~M2! mixture which mimics the polydispers
p-component fluid. We assume that species 1 coincides w
the microions and hence (r1

bin,s1
bin,z1

bin)5(r1 ,s1 ,z1),
which implies the equality of the microion packing fractio
i.e., h1

bin5h1. Then we replace the polydisperse macroi
species, containingp21 components, with a monodispers



po

r
re

-

-

e
ot

n

th
x

-

ly
ar

ce
h

tio
he
e
is
w

ro

ox
e

p-

t-
s a

ro-

s.

A,
te

en
ure
is-
l fo-
its
in

rd

for

r-

al

for
ima-
tic
p-

for
g

f-

si-

sal

be
par-
ith
ion
k is
uld
s the

n-

nce
r-

PRE 60 6727CORRESPONDING-STATES APPROACH TO SMALL . . .
macroion species 2, containing a single ‘‘averaged’’ com
nent. To determine its parameters (r2

bin,s2
bin,z2

bin), we require
that

r2
bin5r2

tot,

r2
bin~s2

bin!35r2
tot^s3&2 ,

r1z11r2
binz2

bin50. ~24!

The first two equations guarantee that the total numbe
macroions and their packing fraction in the M2 mixture a
the same as in the polydisperse fluid (h2

bin5h2); the third
one is the electroneutrality condition for M2 mixture. Com
bining Eq.~24! with r1

bin5r1, one finds the solution

rbin5r and x1
bin5x1 ,

s2
bin5^s&2

1/3,

z2
bin5^z&2 . ~25!

In this way, the definition of the set of M2 mixture param
eters (rbin,T;s1 ,z1 ,s2

bin,z2
bin) is complete.

Choices other than Eq.~25! are clearly possible. We hav
explicitly worked out few of them and found that they do n
significantly alter the final numerical results. Equation~25!
has then been privileged on the basis of its simplicity a
natural physical interpretation.

In addition to being used as a reference system for SA,
M2 mixture may itself be regarded as the simplest appro
mation to the polydispersep-component fluid. The corre
sponding measurable structure factor would then be

SM~q!M2511x1w1
2~q!@S11

bin~q!21#1x2
tot@w2

bin~q!#2

3@S22
bin~q!21#12Ax1x2

totw1~q!w2
bin~q!S12

bin~q!.

~26!

which simply corresponds to approximate the original po
disperse binary mixture with a plain monodisperse bin
mixture.

C. Extended decoupling approximation

To emphasize the role played by the scaling of distan
in the SA, let us consider the simpler case of no scaling. T
can be obtained from the SA expressions by settinglab
51 everywhere. The result corresponds to an approxima
which provides an exact evaluation of all form factors of t
polydisperse system but assumes that the RDFs can b
placed by a set of only three effective RDFs of a monod
perse binary ionic fluid. Hence, in the previous language
have g11(r ).g11

bin(r ), g1b(r ).g12
bin(r ), and gab(r )

.g22
bin(r ) for micro-micro, micro-macro, and macro-mac

ionic pairs, respectively. Equation~23! simplifies to

SM~q!EDA511x1w1
2~q!@S11

bin~q!21#1x2
tot^w~q!&2

2

3@S22
bin~q!21#12Ax1x2

totw1~q!

3^w~q!&2S12
bin~q!. ~27!

The superscript EDA means extended decoupling appr
mation, since this approximation may be reckoned as an
-
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tension to polydisperse ionic colloids of the ‘‘decoupling a
proximation’’ ~DA!, proposed by Kotlarchyk and Chen@20#
for nonionic fluids and well known to the small angle sca
tering experimentalists. The EDA may also be regarded a
special limiting case of the binary substitutional model p
posed by Na¨gele et al. @21# for a different colloidal model
with two polydisperse macroion species and no microion

D. MSA closure and analytic expressions

The expressions we have previously derived for S
EDA, and M2 are clearly independent of the approxima
‘‘closure’’ chosen for solving the OZ equations. One th
expects that an improvement in the selection of the clos
would provide increasingly accurate results for the polyd
perse colloidal suspension. In the present paper we shal
cus mainly on the MSA closure, to take advantage of
analytical properties. Another example will be considered
Sec. V C.

For the PM, the MSA consists in adding to the exact ha
sphere conditiongab(r )50 or hab(r )521 whenr ,sab ,
the approximate relationship~closure!

cab~r !52~kBT!21uab~r ! for r .sab , ~28!

which is asymptotically correct forr→`. The advantage of
the MSA closure is that the corresponding OZ equations
the PM were solved analytically some times ago@8#. Sena-
tore and Blum@22# employed MSA expressions for the pa
tial structure factorsSab(q) to calculate numericallySM(q)
for charged hard spheres witheither size polydispersityor
charge polydispersity. More recently, aclosedMSA formula
for SM(q) by-passing the explicit calculation of the parti
structure factors was obtained in Ref.@12#. This was the
extension to ionic systems of an analogous expression
polydisperse uncharged hard spheres in the PY approx
tion @23#. For the sake of completeness, the MSA analy
expression for the scattering intensity is reported in the A
pendix where some misprints appearing in Ref.@12# are also
corrected. The MSA closure yields analytic expressions
both Smamb

bin (q) and SM(q) depending on a single screenin

parameter 2G, which in turn has to be determined sel
consistently.

A well known drawback of the MSA is that, for dilute
solutions of highly charged particles, it may predict unphy
cal negative values forgab(r ) near the contact distancesab
or in a neighborhood of the first minimum. Some propo
have been advanced to heal this restriction@24–26#. For sim-
plicity, however, the emphasis of the present work will
mainly on concentrated suspensions of weakly charged
ticles. In this regime the MSA is reasonably accurate, w
the Coulomb part of the potential being only a perturbat
with respect to the hard sphere one. The above remar
nevertheless by no means a limit to our method which co
be easily associated to more accurate closures such a
‘‘hypernetted chain approximation’’~HNC!, corresponding
to takeBab(r )50 in Eq. ~8!, or the self-consistent mixing
scheme~HMSA! proposed by Zerah and Hansen for pote
tials with attractive terms@14,15#. Clearly, in the HNC or
HMSA integral equations the monodisperse binary refere
fluid can be treated only numerically. This point will be fu
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ther discussed in Sec. V C where an example of such ca
lation will be provided for the HNC.

V. NUMERICAL CALCULATIONS

In order to display the behavior of the scattering functio
under some typical polydisperse conditions, we numeric
reproduced a realistic experimental environment. The mic
ions were given a valencyz1511 and a diameters1
55 Å ~solvated counterions!, while we used an averag
macroion sizê s&25100 Å with relatively small charges
z^s&2

in the range220 to 0~in e units! to ensure meaningfu
MSA results as previously discussed. We will increase t
value up toz^s&2

5250 later on using HNC. The scatterin
due to the microions is in principle not completely negligib
and it might be also characterized by a different contrast w
respect to the macroions. Nevertheless both contrasts
here fixed to the same valueDn5431010 cm22, which is
typically found in neutron scattering from silica particle
suspended in water@27#. In evaluating the form factors we
further assumedsn

scatt5sn for all particles. A room tempera
ture T5298 K and the dielectric constant«578 of water
result into a valueLB57.189 Å for the Bjerrum length. All
numerical calculations were performed for packing fractio
h50.1, 0.3, and polydispersitys50, 0.1, 0.2, and 0.3~the
first value corresponding to the monodisperse binary m
ture!. We note that whens50, it is necessary to takeuz2

binu
&30 for h50.3 anduz2

binu&10 for h50.1, to avoid unphysi-
cal negative values of the MSAg22

bin at contact.
The three Schulz distributions, with polydispersitys

50.1, 0.2, and 0.3, were discretized with a grid s
Ds/^s&250.02, and truncated atscut/^s&251.56, 2.22, and
2.96, respectively. Thesescut values correspond to polydis
perse mixtures with a number of macroion components eq
to 79, 112, and 149, practically intractable with the availa
algorithms for solving IEs numerically.

A. Polydispersity and charge effects in exact MSA results

Before analyzing the performance of the SA and ot
approximations, it is useful to recall how size and charg
polydispersity affect the measurable scattering structure
tor. This is achieved by using the closed analytical expr
sion for SM(q) which is given in the Appendix which is
exact within the MSA.

Figure 1 depicts the effects of polydispersity on the m
surable structure factor.SM(q)MSA is plotted as a function o
the dimensionless variableq^s&2 for increasing values ofs
and fixed h50.3 andz^s&2

5220. We note that ass in-

creases at fixedh, r decreases. As expected, the effect
increasing polydispersity is threefold:~i! the oscillations on
the tail of the curves are greatly reduced as a consequen
the destructive interference stemming from the several len
scales involved,~ii ! the first peak is lowered, broadened a
shifted to smallerq values corresponding to a larger typic
distance between macroions-macroions nearest-pairs,
~iii ! the q→0 limit is increased since highly dispersed pa
ticles can be more efficiently packed. All these effects p
allel those observed in polydisperse nonionic fluids@7,17# as
well as in mixtures constituted of only macroions interacti
u-
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through a repulsive screened Coulomb interactions@28#, and
they were already recorded even in the PM@22#.

Next we check the effect of the charge. This is reported
Fig. 2, where the SM(q)MSA corresponding to h
50.3, z^s&2

5220, s50.3 is compared with that of the
polydisperse mixture of neutral hard spheres which res
from ‘‘switching off’’ all charges and leaving all other pa
rameters unchanged. As the charge increases, the main
becomes higher and shifts to smallerq values, since its po-
sition is essentially determined by the macroion-macro
equilibrium distance which becomes larger in the presenc
electrostatic repulsions. The difference in theq→0 behavior
is also evident: the charges lower theSM(q) values near the

FIG. 1. Polydispersity effects. Exact MSA structure fact
SM(q) of polydisperse charged hard spheres, at fixed packing f
tion h50.3, for different degrees of polydispersitys (s50 corre-
sponds to the monodisperse binary case!. Other parameters:s1

55 Å, z1511 (e units! for microions; ^s&25100 Å, z^s&2
5

220 for macroions.

FIG. 2. Charge effects. The exact MSA structure factorSM(q)
for polydisperse charged hard spheres withh50.3, z^s&2

5220, s50.3 ~other parameters as in Fig. 1! is compared with its
exact PY counterpart for the corresponding polydisperse mixtur
neutral hard spheres.
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origin, as a consequence of the long-range nature of the C
lomb potential.

B. Scaling approximation plus MSA

Our aim is now to display the performance of the S
when the partial structure factorsSmamb

bin (q) of the reference

M2 mixture are evaluated using the MSA closure. The
SA-MSA results are compared with the exact MSA soluti
for polydisperse charged hard spheres previously discus
We shall comment in the next subsection on a method
envisaged to avoid unnecessary repetitions in the IE calc
tions for the M2 mixture.

In Fig. 3 the structure factorSM(q)SA-MSA is shown for
two different degrees of polydispersity (s50.1 and 0.3) at
low concentration and under weak charge conditionsh
50.1 andz^s&2

5210). The corresponding results from th
M2-MSA and EDA-MSA approximations are also report
for comparison. As expected, at small polydispersity@Fig.
3~a!# there are very little differences among all these curv
although the EDA yields a somewhat larger value forSM(q
50). This overestimation of the low-q scattering in the
EDA becomes much larger as polydispersity increases@Fig.
3~b!#. This is the same qualitative trend resulted in the D
for neutral systems@1,3,7,29#. At s50.3 it is apparent tha
the position of the first peak in the EDA follows that of th
M2, whose maximum is shifted to largerq values with re-
spect to the MSA result. On the other hand, the SA rep
duces more accurately the position of the first peak and
lows very closely the correct curve forq^s&2*6.

The discrepancy in the low-q region, which is in fact the
most interesting from the SAS point of view, can be mo
clearly seen in Fig. 4, where the scattering intensity per u
volumeR(q), calculated for the same parameters of Fig. 3
displayed on a log-log scale. Nevertheless the SA perfo

FIG. 3. ~a! Structure factor SM(q) for h50.1, z^s&2

5210, s50.1 ~other parameters as in Fig. 1!. Comparison of M2-
MSA, EDA-MSA, SA-MSA, and exact MSA results.~b! Same as
~a!, but for s50.3.
u-
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ed.
e
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it
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overall rather well in all regions.
In Fig. 5 the same functions of Fig. 3 are then plotted

a more concentrated suspension and higher macroion cha
(h50.3 andz^s&2

5220), again fors50.1 and 0.3, while

the corresponding results forR(q) are displayed in Fig. 6.
Figures 5~a! and 5~b! yield compelling evidence of the po
tentiality of the SA confirming the previous remarks. It

FIG. 4. Scattering intensity per unit volume,R(q), using a log-
log scale. Comparison of M2-MSA, EDA-MSA, SA-MSA, and ex
act MSA results. The systems are the same as in Fig. 3:~a! h
50.1, z^s&2

5210, s50.1. ~b! Same as~a!, but for s50.3.

FIG. 5. ~a! Structure factor SM(q) for h50.3, z^s&2

5220, s50.1 ~other parameters as in Fig. 1!. Comparison of M2-
MSA, EDA-MSA, SA-MSA, and exact MSA results.~b! Same as
~a!, but for s50.3.
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useful to analyze these results in the sequence M2→EDA
→SA. In Fig. 5~a! SM(q)EDA exactly coincides with
SM(q)M2 in the first peak region, but differs from it at th
locations of the M2 minima and at smallq values. On the
contrary, the SA curve is close to the exact MSA one eve
where. In Fig. 5~b! the M2 approximation largely disagree
with the MSA one. The EDA improves here on the M2 sin
it takes all form factors of the polydisperse fluid correc
into account. It exhibits a lower peak height and practica
no subsequent oscillations. Nevertheless, the EDA has a
matic low-q overestimate and it behaves poorly in essentia
all regions. On the contrary, the SA is fairly accurate in t
whole experimentally accessibleq range. Its performance a
h50.3 appears to be even more accurate than ath50.1. All
these features are quite remarkable if we recall that the
EDA, and M2 curves have been obtained starting from
same partial structure factorsSmamb

bin (q). This fact clearly

shows the crucial role played by the scaling of the distanc
Its effect is to shift the first peak position to the right locati
and to dump all oscillations after the first peak. Physically
confirm the soundness of our ‘‘conformality’’ hypothesis
expressed by Eq.~20! and it shows that overlooking differ
ences among macroion-macroion RDFs at contact~as it is
done in the SA! is a reasonable assumption.

C. Scaling approximation plus HNC

To illustrate the possibility of applying the SA schem
even when the OZ equations admit only numerical solutio
we investigated SA with the HNC closure and analyzed t
casesh50.1, s50.3 with z^s&2

5210 andz^s&2
5250, re-

spectively~all other parameters were fixed as before!. While
the first case was already studied with the SA-MSA,
second one represents a situation, of low concentration

FIG. 6. Scattering intensity per unit volume,R(q), using a log-
log scale. Comparison of M2-MSA, EDA-MSA, SA-MSA, and e
act MSA results. The systems are the same as in Fig. 5:~a! h
50.3, z^s&2

5220, s50.1. ~b! Same as~a!, but for s50.3.
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high charges, in which the MSA yields negative values of
macroion-macroion RDF at contact and hence cannot be
lized. This drawback is avoided by using the HNC closur

In both cases we solved the HNC equations for the
rameter values of the corresponding M2 reference mixtu
using anr-space grid sizeDr /^s&250.02 and a number o
grid points N54096. This choice implies thatq

max̂
s&2

550p, with a small enough grid size inq space,Dq
5qmax/N, allowing the implementation of a ‘‘trick’’ pro-
posed in Ref.@7# . In fact, the expression forSM(q)SA, Eq.
~23!, would require, at eachq, the evaluation of one term
S11

bin(q), p21 termsS12
bin(qs1b /s12

bin) and (p21)p/2 terms
S22

bin(qsab /s2
bin) ~recall thatp21 is the number of macroion

components!. These cumbersome repeated calculations
be avoided. We calculatedS11

bin , S12
bin , and S22

bin at the grid
pointsqi5 iDq( i 50, . . . ,N21) only once, storing all these
values in arrays. Although the grid pointsqi do not exhaust
the whole set ofqs1b /s12

bin andqsab /s2
bin values required in

Eq. ~23!, the stored structure factors represent a fine sa
pling of these continuous functions. Therefore, if theDq is
small enough, the value ofS12

bin ~or S22
bin) at a certain point can

be approximated with that at the nearest grid point with
negligible error. In this way the sums of Eq.~23! can be
quickly performed.

Figure 7 shows theSM(q)SA-HNC curves, along with the
SA-MSA one for z^s&2

5210. As expected, in the lowe
charge case the SA-HNC prediction is very close to the S
MSA one, with only a slight shift in the first peak position
The SA-HNC structure factor withz^s&2

5250 is not a
trivial result: it refers to a polydisperse colloidal system w
mean size ratios1 :^s&251:20 and mean~absolute! charge
ratio uz1u:uz^s&2

u51:50. Unfortunately, in this case we can
not make a comparison with ‘‘exact’’ data. On the oth
hand, the lack of these data and the difficulty of generat
them in a very asymmetric regime is just the strongest m
tivation for introducing approximate theories such as the S

FIG. 7. SA-HNC predictions for the structure factorSM(q) at
h50.1, s50.3, withz^s&2

5210 andz^s&2
5250 ~other parameters

as in Fig. 1!. In the z^s&2
5210 case the corresponding SA-MS

curve is also plotted for comparison.
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VI. CONCLUDING REMARKS

In this paper the problem of computing scattering fun
tions for polydisperse ionic colloidal fluids has been a
dressed by integral equation methods. In the framework
the primitive model we have shown that, despite the co
plexity of these systems, surprisingly accurate predicti
can be obtained with a limited numerical effort. We ha
successfully extended thescaling approximationintroduced
in Ref. @7# for polydisperse fluids of neutral particles. Th
SA still works well when Coulombic~both repulsive and
attractive! interactions are present, notwithstanding t
strong charge-size asymmetries of the polydisperse collo
regime. Only the study of an appropriate monodisperse
nary mixture ~the M2 reference system! is required for a
complete characterization of the polydisperse system.

Our corresponding states theory is based on the sim
physical idea of conformality of all RDFs in the polydisper
mixture. All partial structure factors are generated by scal
their three counterparts of the M2 fluid. In the liquid sta
theory similar ideas have been widely exploited in the p
@18,19# but, to our knowledge, Ref.@7# and this paper are th
first application to polydisperse fluids.

Clearly, the SA theory is accurate only in the average
fact, the scaling is hardly accurate for each individual p
correlationgab(r ). In particular, it incorrectly assumes th
equality of the RDFs at contact for all macroion-macroi
pairs as well as for the microion-macroion ones. Howev
an essential feature of our SA is that it correctly ensu
gab(r )50 inside the hard cores. These excluded volu
conditions are crucial, as it is shown by the failure of t
‘‘extended decoupling approximation’’ which neglects the
The structure factorsSM(q)SA turn out to be accurate in th
first peak region and beyond; some inaccuracy, due to
harsh approximations of our theory, is found at lowq values.
Since theq→0 limit is related to thermodynamics, thi
means that the SA can be meaningfully exploited to extr
structural but not thermodynamical predictions.

Because of its simplicity, the SA can be safely employ
also when the OZ integral equations have to be solved
merically since its application to both different closures a
different potential for ionic colloids is feasible. These fe
tures are indicative that SA is a useful theoretical tool
investigate, to first approximation, the structure of polyd
perse~nonionic and ionic! colloids under highly demanding
conditions. The existence of a good approximation wh
reduces the study of polydisperse fluids to that of an eff
tive monodisperse one should not be underestimated.
life colloids are always polydisperse to a certain degree
polydispersity always represents a challenge in the inter
tation of experimental data. We hope that the SA will res
particularly useful in the analysis of small angle scatter
data, since it considerably outperforms the ‘‘decoupling
proximation,’’ popular in this context, at the cost of a min
mal additional effort.

It would be interesting to compare our theory with t
approach proposed by D’Aguanno and Klein@5#. As already
mentioned in the Introduction, these authors followed a d
ferent point of view and replaced the continuous Schulz d
tribution with an histogram containing a finite number
well-chosen diameters, thus reducing the polydisperse fl
-
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to an effective mixture with a very small numberp8 of com-
ponents. In this case, however, we expect a nontrivial
crease in the numerical effort involved. In fact, to avoid t
rapid increase in computational cost with increasingp8 in the
D’Aguanno-Klein mixtures, that approach was recen
modified by Lado and co-workers by adding an orthogo
polynomial expansion technique@30#, and afterwards by
merging this with a thermodynamic perturbation sche
@31#. A comparison of the SA with these alternative theor
is left to future work.
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APPENDIX: MSA EXPRESSION FOR THE SCATTERING
INTENSITY

In this appendix we report the basic formulas involved
the MSA calculation of the scattering intensity from charg
hard sphere fluids, as described in Ref.@12#. Let us introduce
the following short-hand notations:

$Y%0[ (
n51

p

rnYn5r^Y&, ~A1!

$Y%[ (
n51

p

rnYneiXn5r^YeiX&, ~A2!

whereXn[qsn/2. The MSA analytical solution depends o
the screening parameter 2G, which must be determined nu
merically by solving the consistency equation

~2G!254pLB(
n51

p

rnS zn2Pzsn
2/2

11Gsn
D 2

, ~A3!

where

Pz5
p

V H sz

11GsJ
0

, ~A4!

V5D1
p

2 H s3

11GsJ
0

, ~A5!

with D512h. These quantities are also required to co
pute

An5
LB

G

zn2Pzsn
2/2

11Gsn
. ~A6!

In the limit of point ions~all sn→0), 2G becomes the De-
bye inverse shielding lengthkD of the Debye-Hu¨ckel theory
for electrolyte solutions, while for finite size ions it is alway
a lower bound~i.e., 2G<kD). We also need
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an5
psn

3fn

6D
, ~A7!

bn5
psn

2cn

2D
, ~A8!

gn
(0)5

2p i

q

G2

LB
Ansncn , ~A9!

gn
(1)5

2p i

q

G

LB
Ane2 iXn, ~A10!

gn5gn
(0)1gn

(1) , ~A11!

where cn5 j 0(Xn) and fn53 j 1(Xn)/Xn , with j 0(x)
5sinx/x and j 1(x)5(cosx2xcosx)/x2 being Bessel func-
tions.

The final expression for the scattering intensity per unit
volume is

R~q!5R1~q!1R2~q!, ~A12!
s
e,

p-

d

c

ys
f

where

R15$F2%01$a2%0uc1u21$b2%0uc2u2

12 Re@$Fa%0c11$Fb%0c21$ab%0c1c2* #,

~A13!

R25$uqgu2%0uc3u212 Re@$qgF%0c31$qga%0c3c1*

1$qgb%0c3c2* #. ~A14!

Here,Fn is the form factor given by Eq.~2!, Re@•••# the real
part of a complex number, and the asterisk denotes com
conjugation. Other necessary quantities appearing in th
equations are

c15
t2

t1
, c25

t3

t1
, c35

t4

t1
, ~A15!

tm(m51, . . . ,4) being the cofactor of the (1,m)th element
of the first row in the following determinant:
Urn
1/2Fn rn

1/2an rn
1/2bn rn

1/2qgn

$F% 11$a% $b%23j2 /D1 iq/2 $qg (0)%22iGPzD

$sF% $sa% 11$sb% $sqg (0)%

$AF% $Aa% $Ab% q1$Aqg (0)%12iG

U , ~A16!

and wherej25(p/6)$s2%0.
Equations~A4! and~A16! correct the misprints appearing in the corresponding equations of Ref.@12#. In the expression of

Pz given by Eq.~48! of that paper the factorp was omitted. We also note that our definition ofPz andV differs from Blum’s
original one@8#.
s
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